A New Synthetic Method of Macrocyclic Lactones from ω-Iodoalkylacrylates

Motoji ABE, Takaoki HAYASHIKOSHI, and Takeo KURATA*

Department of Industrial Chemistry, Meiji University, Higashimita, Tama-ku, Kawasaki 214

When the photostimulated cyclization reaction of ω -iodoalkylacrylates was performed in the presence of metal hydride complexes such as sodium cyanoborohydride(NaBH₃CN), sodium borohydride(NaBH₄) and potassium borohydride (KBH₄), the corresponding macrocyclic lactones were produced. The use of NaBH₃CN led to the highest yield of lactones.

With respect to the synthesis of macrocyclic lactones by intramolecular cyclization reactions, a large number of studies have been reported. We have recently reported a n-Bu₃SnH mediated intramolecular free radical cyclization reaction. Here we report a new synthetic method for producing macrocyclic lactones [I] by the photoirradiation of ω -iodoalkylacrylate [A] in the presence of various kinds of metal hydride complexes (Scheme 1). Although several reports have been concerned with the reduction of organic halides by metal hydride complexes under photoirradiation, ⁵⁻⁷⁾ none of them have referred to the photostimulated cyclization reaction giving medium sized ring lactones.

I (CH₂)_nOCCH=CH₂
$$\xrightarrow{\text{Metal hydride complexes}}$$
 (CH₂)_n (CH₂)_n

Scheme 1. Cyclization Reaction of ω -Iodoalkylacrylates.

The synthesis of [A] was achieved in 3 steps from α , ω -diols(1) as shown in Scheme 2. ω -Bromoalkanols (2) with different chain lengths(n=6-12) were prepared from their corresponding diols with 47% HBr. These bromides were smoothly converted to the corresponding iodides(3) by the reaction with sodium iodide in acetone. [A] was obtained by esterification of acrylic acid with(3).

Scheme 2. Preparation of ω -Iodoalkylacrylates.

A mixture of 1mmol of [A] and 5mmol of the metal hydride complex in 400ml of solvent was irradiated with 100W high-pressure mercury lamp for 3 hours under nitrogen. After the reaction was completed, the metal hydride complex was removed by treatment with brine and then the solvent was evaporated *in vacuo*. The products thus obtained were purified by column chromatography on silica-gel (n-hexane: benzene = 40:60) and identified by FT-IR, GC-MS, ¹H-NMR and ¹³C-NMR.

Table 1 shows the results of the photostimulated cyclization of 10-iododecylacrylate[A] by using metal hydride complexes.

Table 1. Effects of Metal hydride complex a)

I (CH₂)₁₀OCCH=CH₂

[A]

_		Conversion	Selectivity / % b)			
Reagent	Solvent	/ % b)	[]]	[[]]		Others c)
NaBH ₃ CN	Methanol	100	87	12	1	-
$NaBH_4$	Ethanol	87	53	14	19	14
$\mathrm{KBH_4}$	Ethanol	94	43	17	19	21
${ m LiBH_4}$	Ether	92	-	-	14	86
$LiAlH_4$	Ether	100	-	-	-	100

- a) Reaction conditions; 10-Iododecylacrylate: 1 mmol, reagent: 5 mmol, solvent: 400 ml, irradiation time: 3 h, temperature: room temp.
- b) Determined by GC analysis. c) Reduction products.

From Table 1, it was found that $NaBH_3CN$ led to the highest yield of the lactone [I]. The cyclization reaction also occurred when $NaBH_4$ and KBH_4 were used, but the yield of the lactone decreased. Lithium borohydride(LiBH₄) and lithium aluminum hydride (LiAlH₄), provided the reduction products of the ester group of [A] (for example, $I(CH_2)_{10}OCOCH=CH_2 \rightarrow CH_3(CH_2)_9OH + CH_3(CH_2)_2OH$.).

Tuble 2. Effects of solvent								
Solvent	Conversion		Selectivity / % b)					
	/ % ^{b)}	[1]	[[]	[[]	Others c)			
methanol	100	87	12	1	-			
ethanol	100	71	29	-	-			
acetonitrile	100	65	22	2	11			
THF	59	48	11	5	36			
DMF	55	36	3	18	33			

Table 2. Effects of solvent a)

- a) Reaction conditions; 10-Iododecylacrylate: 1 mmol, NaBH₃CN: 5 mmol, solvent: 400 ml, irradiation time: 3 h, temperature: room temp.
- b) Determined by GC analysis. c) Others consisted of several components.

Table 3. Photocyclization Reaction of ω -Iodoalkylacrylate using NaBH₃CN ^{a)}

Ring size (n)	Conversion / % b)		Isolated yield			
		[I]	[П]	(m)	Others c)	of[]]/%
10 (6)	97	83	13	4	2	74
11 (7)	98	80	17	3	2	73
12 (8)	100	84	14	2	2	79
13 (9)	100	87	11	2	1	81
14 (10)	100	87	12	1	-	82
15 (11)	100	90	10	-	-	86
16 (12)	100	93	7	-	-	90
14 (10) ^{d)}	96	75	3	14	8	72

- a) Reaction conditions; ω -Iodoalkylacrylate: 1 mmol, NaBH₃CN: 5 mmol, methanol: 400 ml, irradiation time: 3 h, temperature: room temp.
- b) Determined by GC analysis. c) Unidentified compounds.
- d) Reaction conditions; ω-Iodoalkylacrylate: 1 mmol, n-Bu₃SnH: 1 mmol, benzene: 400 ml, AIBN: 0.1 mmol, temperature: room temp.

In order to elucidate the dependence on solvents, the cyclization of 10-iododecylacrylate was carried out using various solvents (Table 2). It was found that methanol was the best solvent. Seven photocyclization reactions giving 10- to 16-membered were investigated. The results in Table 3 show that all the reactions give

lactones in high yields. Noteworthy was the fact that the medium sized ring lactones (10, 11-membered), which were difficult to obtain by a standard cyclization method, can also be obtained in good yield. Next, free radical cyclization reaction was carried out using Bu $_3$ SnH and AIBN as a radical initiator (Table 3). Bu $_3$ SnH / AIBN having high conversion of ω -iodoalkylacrylate showed lower yield of [I] than this photocyclization reaction.

Cyclization of 10-iododecylacrylate under variety conditions were investigated (Table 4). From Table 4, NaBH ₃CN and photoirradiation has been found very useful for cyclization reaction. And by comparing entry 4 with entry 8, it is assumed that the cyclization reaction proceeds by a radical chain mechanism involving the cyanoborane radical anions (BH₂ CN-).

	Conditions	Conversion / % b)	Selectivity / % b)			c)
Entry	(irradiation time)		[I]	[[]	[[]	Others of
1	hν,(3h)	11	-	-	85	15
2	NaBH ₃ CN, dark, (10h)	0	-	-	-	-
3	NaBH ₃ CN, reflux, (3h)	16	-	-	100	-
4	NaBH ₃ CN, AIBN ^{d)} , (3h)	97	61	18	3	18
5	NaBH ₃ CN, h ν , (3h)	100	87	12	1	-
6	NaBH ₃ CN, h ν ,hydroquinone ^{e)} , (3h	n) 68	59	10	9	22

Table 4. Cyclization of 10-Iododecylacrylate under variety conditions ^{a)}

From these results, the present study provides a new synthetic method for macrocyclic lactones.

References

- 1) N. A. Porter and V. H. T. Chang, J. Am. Chem. Soc., 109, 4976(1987).
- 2) J. E. Baldwin, R. M. Adlington, and S. H. Ramcharitar, Tetrahedron, 48, 3413(1992).
- 3) J. D. White, N. J. Green, and F. F. Fleming, *Tetrahedron Lett.*, 34, 3515(1993).
- 4) T.Kurata and K.Narita, Yukagaku, 40, 39(1991).
- 5) J. A. Barltrop and D. Bradbury, J. Am. Chem. Soc., 95, 5085(1973).
- 6) A, N, Abeywickreme and A. L. J. Beckwith, *Tetrahedron Lett.*, 27, 109(1986).
- 7) M. Kropp and G. B. Shuster, Tetrahedron Lett., 28, 5295(1987).

(Received June 16, 1994)

a) Reaction conditions; 10-Iododecylacrylate: 1 mmol, NaBH₃CN: 5 mmol, methanol: 400 ml, temperature: room temp. b) Determined by GC analysis.

c) Others consisted of several components. d) Radical initiator (1 mmol) was used.

e) Radical quencher (1 mmol) was used.